Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development

Author:

Li Hongde1ORCID,Rai Madhulika1,Buddika Kasun1,Sterrett Maria C.1,Luhur Arthur1ORCID,Mahmoudzadeh Nader H.1,Julick Cole R.2,Pletcher Rose C.1,Chawla Geetanjali13ORCID,Gosney Chelsea J.1,Burton Anna K.1,Karty Jonathan A.4,Montooth Kristi L.2,Sokol Nicholas S.1,Tennessen Jason M.1ORCID

Affiliation:

1. Department of Biology, Indiana University, Bloomington, IN 47405, USA

2. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA

3. Current Address: Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India

4. Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA

Abstract

The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (dLDH) activity. The resulting metabolic program is ideally suited to synthesize macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila dLDH in promoting biosynthesis, we examined how dLdh mutations influence larval development. Our studies unexpectantly found that dLdh mutants grow at a normal rate, indicating that dLDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that dLdh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both dLDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality, and decreased glycolytic flux. Considering that human cells also generate G3P upon Lactate Dehydrogenase A (LDHA) inhibition, our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness upon growing animal tissues.

Funder

National Institute of General Medical Sciences

Division of Integrative Organismal Systems

Division of Chemistry

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3