C/EBPδ is a crucial regulator of pro-apoptotic gene expression during mammary gland involution

Author:

Thangaraju Muthusamy1,Rudelius Martina2,Bierie Brian3,Raffeld Mark2,Sharan Shikha1,Hennighausen Lothar3,Huang A-Mei1,Sterneck Esta1

Affiliation:

1. Laboratory of Protein Dynamics and Signaling, Center for Cancer Research,National Cancer Institute, Frederick, MD 21702-1201, USA

2. Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda MD 20892, USA

3. Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA

Abstract

The STAT3 transcription factor is an important initiator of mammary gland involution in the mouse. This work shows that the STAT3 target gene CCAAT/enhancer binding protein delta (C/EBPδ) is a crucial mediator of pro-apoptotic gene expression events in mammary epithelial cells. In the absence of C/EBPδ, involution is delayed, the pro-apoptotic genes encoding p53, BAK, IGFBP5 and SGP2/clusterin are not activated, while the anti-apoptotic genes coding for BFL1 and Cyclin D1 are not repressed. Consequently, p53 targets such as survivin, BRCA1, BRCA2 and BAX are not regulated appropriately and protease activation is delayed. Furthermore,expression of MMP3 and C/EBPδ during the second phase of involution is perturbed in the absence of C/EBPδ. In HC11 cells, C/EBPδ alone is sufficient to induce IGFBP5 and SGP2. It also suppresses Cyclin D1 expression and cooperates with p53 to elicit apoptosis. This study places C/EBPδbetween STAT3 and several pro- and anti-apoptotic genes promoting the physiological cell death response in epithelial cells at the onset of mammary gland involution.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3