Age-dependent fate and lineage restriction of single NG2 cells

Author:

Zhu Xiaoqin1,Hill Robert A.1,Dietrich Dirk2,Komitova Mila1,Suzuki Ryusuke1,Nishiyama Akiko13

Affiliation:

1. Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.

2. Department of Neurosurgery, University Clinic Bonn, D-53105 Bonn, Germany.

3. University of Connecticut Stem Cell Institute and University of Connecticut Center for Regenerative Biology, Storrs, CT 06269-4243, USA.

Abstract

NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To investigate the temporal changes in NG2 cell fate, we generated NG2creER™BAC transgenic mice, in which tamoxifen-inducible Cre is expressed in NG2 cells. Cre induction at embryonic day 16.5, postnatal day (P) 2, P30 and P60 in mice that were double transgenic for NG2creER™BAC and the Cre reporter revealed that NG2 cells in the postnatal brain generate only NG2 cells or oligodendrocytes, whereas NG2 cells in the embryonic brain generate protoplasmic astrocytes in the gray matter of the ventral forebrain in addition to oligodendrocytes and NG2 cells. Analysis of cell clusters from single NG2 cells revealed that more than 80% of the NG2 cells in the P2 brain give rise to clusters consisting exclusively of oligodendrocytes, whereas the majority of the NG2 cells in the P60 brain generate clusters that contain only NG2 cells or a mixture of oligodendrocytes and NG2 cells. Furthermore, live cell imaging of single NG2 cells from early postnatal brain slices revealed that NG2 cells initially divide symmetrically to produce two daughter NG2 cells and that differentiation into oligodendrocytes occurred after 2-3 days.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3