Non-visual numerical discrimination in a blind cavefish (Phreatichthys andruzzii)

Author:

Bisazza Angelo1,Tagliapietra Christian1,Bertolucci Cristiano2,Foà Augusto2,Agrillo Christian1

Affiliation:

1. Department of General Psychology, University of Padova, 35131 Padova, Italy

2. Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy

Abstract

Over a decade of comparative studies, researchers have found that rudimentary numerical abilities are widespread among vertebrates. While experiments in mammals and birds have employed a variety of stimuli (visual, auditory and tactile), all fish studies involved visual stimuli and it is unknown whether fish can process numbers in other sensory modalities. To fill this gap, we studied numerical abilities in Phreatichthys andruzzii, a blind cave-dwelling species that evolved in the phreatic layer of the Somalia desert. Fish were trained to receive a food reward to discriminate between two groups of objects placed in opposite positions of their home tank. In Experiment 1, subjects learned to discriminate between two and six objects, with stimuli not controlled for non-numerical continuous variables that co-vary with numbers, such as total area occupied by stimuli or density. In Experiment 2, the discrimination was two versus four, with half of the stimuli controlled for continuous quantities and half not controlled for continuous quantities. The subjects discriminated only the latter condition, indicating that they spontaneously used non-numerical information, as other vertebrates tested in similar experiments. In Experiments 3 and 4, cavefish trained from the beginning only with stimuli controlled for continuous quantities proved able to learn the discrimination of quantities based on the sole numerical information. However, their numerical acuity was lower than that reported in other teleost fish tested with visual stimuli.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3