Opioid Peptides: Aspects of their Origin, Release and Metabolism

Author:

HUGHES J.1,BEAUMONT A.1,FUENTES J. A.1,MALFROY B.1,UNSWORTH C.1

Affiliation:

1. Department of Biochemistry, Imperial College, London SW7, U.K.

Abstract

At the present time there is evidence for two families of related peptides which act as ligands for opiate receptor sites. The endorphin group of peptides are derived from the ACTH/LPH precursor pro-opiocortin. The enkephalins appear to be formed from a separate precursor or precursors that have yet to be fully characterized. There appear to be a number of different types of opiate receptors and this may be related to the multiplicity of peptide ligands that have so far been identified. The enkephalins and related peptides appear to have a much wider distribution than the endorphins but the latter may act as circulating hormones unlike the enkephalins. It is likely that both endorphins and enkephalins are involved in sensory modulation processes and release of these peptides has been demonstrated during brain stimulation for pain relief. The enkephalins are very rapidly inactivated by tissue proteases, the aminopeptidases appear largely responsible for the inactivation of exogenously administered enkephalins but the dipeptidyl carboxypeptidase, termed enkephalinase, may have a special inactivating function at enkephalinergic synapses. Evidence will be presented for the biosynthesis, the release and inactivation of the enkephalins relating to the above points.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Receptors;Handbook on Opium;2022

2. Casomorphins and Gliadorphins Have Diverse Systemic Effects Spanning Gut, Brain and Internal Organs;International Journal of Environmental Research and Public Health;2021-07-26

3. Corticotropin-Releasing Factor and the Brain Norepinephrine System;Hormones, Brain and Behavior;2009

4. Neurosecretory Peptides and Biogenic Amines;Ciba Foundation Symposium 88 - Neuropharmacology of Insects;2008-05-30

5. Convergent regulation of locus coeruleus activity as an adaptive response to stress;European Journal of Pharmacology;2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3