E1^E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium

Author:

McIntosh Pauline B.1,Laskey Peter1,Sullivan Kate1,Davy Clare1,Wang Qian1,Jackson Deborah J.1,Griffin Heather M.1,Doorbar John1

Affiliation:

1. MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK

Abstract

The keratin IF network of epidermal keratinocytes provides a protective barrier against mechanical insult, it is also a major player in absorbing stress in these cells. The human papilloma virus (HPV) type 16 E1^E4 protein accumulates in the upper layers of HPV16-infected epithelium and is known to associate with and reorganise the keratin IF network in cells in culture. Here, we show that this function is conserved amongst a number of HPV alpha-group E1^E4 proteins and that the differentiation-dependent keratins are also targeted. Using time-lapse microscopy, HPV16 E1^E4 was found to effect a dramatic cessation of keratin IF network dynamics by associating with both soluble and insoluble keratin. Network disruption was accompanied by keratin hyperphosphorylation at several sites, including K8 S73, which is typically phosphorylated in response to stress stimuli. Keratin immunoprecipitated from E1^E4-expressing cells was also found to be ubiquitylated, indicating that it is targeted for proteasomal degradation. Interestingly, the accumulation of hyperphosphorylated, ubiquitylated E1^E4-keratin structures was found to result in an impairment of proteasomal function. These observations shed new light on the mechanism of keratin IF network reorganisation mediated by HPV16 E1^E4 and provide an insight into the depletion of keratin co-incident with E1^E4 accumulation observed in HPV-infected epithelium.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference58 articles.

1. The role of the ubiquitin-proteasome pathway in the formation of mallory bodies;Bardag-Gorce;Exp. Mol. Pathol.,2002

2. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line;Boukamp;J. Cell Biol.,1988

3. Down-regulation of keratin 14 gene expression after v-Ha-ras transfection of human papillomavirus-immortalized human cervical epithelial cells;Bowden;Cancer Res.,1992

4. Epidermal morphogenesis and keratin expression in c-Ha-ras-transfected tumorigenic clones of the human HaCaT cell line;Breitkreutz;Cancer Res.,1991

5. Differential modulation of epidermal keratinization in immortalized (HaCaT) and tumorigenic human skin keratinocytes (HaCaT-ras) by retinoic acid and extracellular Ca2+;Breitkreutz;Differentiation,1993

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3