Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world

Author:

Rodgers Essie M.1ORCID,Franklin Craig E.2ORCID,Noble Daniel W. A.1ORCID

Affiliation:

1. Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia

2. School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia

Abstract

ABSTRACT Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8–9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16–44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.

Funder

Australian National University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3