Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light

Author:

Muheim Rachel1,Bäckman Johan1,Åkesson Susanne1

Affiliation:

1. Bird Migration Group, Department of Animal Ecology, Lund University,Ecology Building, SE-223 62 Lund, Sweden

Abstract

SUMMARYMagnetic compass orientation in birds has been shown to be light dependent. Results from behavioural studies indicate that magnetoreception capabilities are disrupted under light of peak wavelengths longer than 565 nm, and shifts in orientation have been observed at higher light intensities(43-44×1015 quanta s-1 m-2). To investigate further the function of the avian magnetic compass with respect to wavelength and intensity of light, we carried out orientation cage experiments with juvenile European robins, caught during their first autumn migration,exposed to light of 560.5 nm (green), 567.5 nm (green-yellow) and 617 nm (red)wavelengths at three different intensities (1 mW m-2, 5 mW m-2 and 10 mW m-2). We used monochromatic light of a narrow wavelength range (half bandwidth of 9-11 nm, compared with half bandwidths ranging between 30 nm and 70 nm used in other studies) and were thereby able to examine the magnetoreception mechanism in the expected transition zone between oriented and disoriented behaviour around 565 nm in more detail. We show (1) that European robins show seasonally appropriate migratory directions under 560.5 nm light, (2) that they are completely disoriented under 567.5 nm light under a broad range of intensities, (3) that they are able to orient under 617 nm light of lower intensities, although into a direction shifted relative to the expected migratory one, and (4) that magnetoreception is intensity dependent, leading to disorientation under higher intensities. Our results support the hypothesis that birds possess a light-dependent magnetoreception system based on magnetically sensitive,antagonistically interacting spectral mechanisms, with at least one high-sensitive short-wavelength mechanism and one low-sensitive long-wavelength mechanism.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3