Oxygen transfer during aerobic exercise in a varanid lizardVaranus mertensiis limited by the circulation

Author:

Frappell Peter1,Schultz Tim2,Christian Keith2

Affiliation:

1. Department of Zoology, La Trobe University, Melbourne, Victoria, 3086,Australia

2. School of Biological Sciences, Northern Territory University, Darwin, NT 0909, Australia

Abstract

SUMMARYOxygen transfer during sustained maximal exercise while locomoting on a treadmill at 0.33 m s-1 was examined in a varanid lizard Varanus mertensi at 35 °C. The rate of oxygen consumption(V̇O2) increased with locomotion from 3.49±0.75 (mean ± S.D.) to 14.0±4.0 ml O2 kg-1 min-1. Ventilation(V̇E) increased, aided by increases in both tidal volume and frequency, in direct proportion to V̇O2. The air convection requirement(V̇E/V̇O2=27)was therefore maintained, together with arterial PaCO2 and PaO2. The alveolar—arterial PO2 difference(PAO2—PaO2)also remained unchanged during exercise from its value at rest, which was approximately 20 mmHg. Pulmonary diffusion for carbon monoxide(0.116±0.027 ml kg-1 min-1 mmHg-1) was double the value previously reported in V. exanthematicus and remained unchanged with exercise. Furthermore, exercise was associated with an increase in the arterial—venous O2 content difference(CaO2—CvO2),which was assisted by a marked Bohr shift in the hemoglobin saturation curve and further unloading of venous O2. During exercise the increase in cardiac output (Q̇tot) did not match the increase in V̇O2, such that the blood convection requirement(Q̇tot/V̇O2)decreased from the pre-exercise value of approximately 35 to 16 during exercise. Together, the results suggest that ventilation and O2transfer across the lung are adequate to meet the aerobic needs of V. mertensi during exercise, but the decrease in the blood convection requirement in the presence of a large arterial—venous O2content difference suggests that a limit in the transport of O2 is imposed by the circulation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3