Analysis of Ca2+ uptake into the smooth endoplasmic reticulum of permeabilised sternal epithelial cells during the moulting cycle of the terrestrial isopodPorcellio scaber

Author:

Hagedorn Monica1,Ziegler Andreas1

Affiliation:

1. Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm,89069 Ulm, Germany

Abstract

SUMMARYIn terrestrial isopods, large amounts of Ca2+ are transported across anterior sternal epithelial cells during moult-related deposition and resorption of CaCO3 deposits. Because of its toxicity and function as a second messenger, resting cytosolic Ca2+ levels must be maintained below critical concentrations during epithelial Ca2+transport, raising the possibility that organelles play a role during Ca2+ transit. We therefore studied the uptake of Ca2+into Ca2+-sequestering organelles by monitoring the formation of birefringent calcium oxalate crystals in permeabilised anterior and posterior sternal epithelium cells of Porcellio scaber during Ca2+-transporting and non-transporting stages of the moulting cycle using polarised-light microscopy. The results indicate ATP-dependent uptake of Ca2+ into organelles. Half-maximal crystal growth at a Ca2+ activity, aCa, of 0.4 μmol l-1 and blockade by cyclopiazonic acid suggest Ca2+uptake into the smooth endoplasmic reticulum by the smooth endoplasmic reticulum Ca2+-ATPase. Analytical electron microscopical techniques support this interpretation by revealing the accumulation of Ca2+-containing crystals in smooth membranous intracellular compartments. A comparison of different moulting stages demonstrated a virtual lack of crystal formation in the early premoult stage and a significant fivefold increase between mid premoult and the Ca2+-transporting stages of late premoult and intramoult. These results suggest a contribution of the smooth endoplasmic reticulum as a transient Ca2+ store during intracellular Ca2+ transit.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3