Intracardiac flow separation in anin situperfused heart from Burmese pythonPython molurus

Author:

Wang Tobias1,Altimiras Jordi2,Axelsson Michael2

Affiliation:

1. Department of Zoophysiology, University of Aarhus, 8000 Aarhus C,Denmark

2. Department of Zoophysiology, University of Gothenburg, Sweden

Abstract

SUMMARYThe heart of non-crocodilian reptiles has two separate atria that receive blood from the systemic and pulmonary circulations. The ventricle is not fully divided, but is compartmentalised into two chambers (cavum dorsale and cavum pulmonale) by a muscular ridge that runs from the apex to the base of the ventricle. The muscular ridge is small in turtles, but is well developed in varanid lizards and many species of snakes. These anatomical differences correlate with an effective blood flow separation in varanid lizards, whereas turtles can exhibit very large cardiac shunts. Very little is known about the cardiac shunt patterns in other groups of reptiles.Here we characterise cardiac performance and flow dynamics in the Burmese python (Python molurus) using an in situ perfused heart preparation. The pericardium remained intact and the two atria were perfused separately (Ringer solution), and the two systemic and the pulmonary outflows were independently cannulated. Right and left atrial filling pressures and ventricular outflow pressures of the pulmonary and systemic vessels could be manipulated independently, permitting the establishment of large experimental intraventricular pressure gradients across the muscular ridge. The maximal power output generated by the systemic side of the ventricle exceeded the maximal power output that was generated by the cavum pulmonale that perfuse the pulmonary circulation. Furthermore, systemic flow could be generated against a higher outflow pressure than pulmonary flow. Perfusate entering the right atrium was preferentially distributed into the pulmonary circulation,whereas perfusate into the left atrium was distributed to the systemic circulation.Our study indicates that the well-developed muscular ridge can separate the cavum systemic and pulmonary sides of the heart to prevent mixing of systemic and pulmonary flows. Therefore, the heart of Python appears to exhibit a large degree of ventricular flow separation as previously described for varanid lizards. We speculate that the ventricular separation has evolved in response to the need of maintaining high oxygen delivery while protecting the pulmonary circulation from oedema as result of high vascular pressures.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3