Metabolic response to wind of downy chicks of Arctic-breeding shorebirds(Scolopacidae)

Author:

Bakken George S.1,Williams Joseph B.2,Ricklefs Robert E.3

Affiliation:

1. Department of Life Sciences, Indiana State University, Terre Haute,Indiana 47809, USA

2. Department of Evolution, Ecology and Organismal Biology, Ohio State University, 1735 Niel Avenue, Columbus, Ohio 43210-1293, USA

3. Department of Biology, University of Missouri — St Louis, 8001 Natural Bridge Road, St Louis, Missouri 63121-4499, USA

Abstract

SUMMARYWind is a significant factor in the thermoregulation of chicks of shorebirds on the Arctic tundra. We investigated the effect of wind at speeds typical of near-surface conditions (0.1-3 ms-1) on metabolic heat production, evaporative cooling and thermal conductance of 1- to 3- week-old downy scolopacid chicks (least sandpiper Calidris minutilla;short-billed dowitcher Limnodromus griseus; whimbrel Numenius phaeopus). Body mass ranged from 9 to 109 g. To accurately measure the interacting effects of air temperature and wind speed, we used two or more air temperatures between 15° and 30°C that produced cold stress at all wind speeds, but allowed chicks to maintain normal body temperature(approximately 39°C). Thermal conductance increased by 30-50% as wind speed increased from 0.1 to 3 ms-1. Conductance in these chicks is somewhat lower than that of 1-day-old mallard ducklings of similar mass, but higher than values reported for downy capercaillie and Xantus' murrelet chicks, as well as for adult shorebirds. Evaporative water loss was substantial and increased with mass and air temperature. We developed a standard operative temperature scale for shorebird chicks. The ratio of evaporative cooling to heat production varied with wind speed and air temperature.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3