Adrenergic control of the cardiovascular system in the turtleTrachemys scripta

Author:

Overgaard Johannes1,Stecyk Jonathan A. W.12,Farrell Anthony P.2,Wang Tobias1

Affiliation:

1. Department of Zoophysiology, Aarhus University, Building 131, 8000 Aarhus C, Denmark

2. Department of Biological Sciences, Simon Fraser University, Burnaby,British Columbia, V5A 1S6, Canada

Abstract

SUMMARYFreshwater turtles, Trachemys scripta, like all non-crocodilian reptiles, are able to shunt blood between the pulmonary and systemic circulations owing to their undivided ventricle. The prevailing hypothesis is that the ratio of pulmonary and systemic resistances is the primary determinant of cardiac shunting in turtles. In the present study, we have examined the adrenergic influences on vascular resistances in the pulmonary and systemic circulations and the associated effects on cardiac shunts in turtles. To achieve this objective, systemic blood flow and pressures and pulmonary blood flow and pressures were measured simultaneously in anaesthetised turtles during bolus injections of α- andβ-adrenergic agonists and antagonists. Total cardiac output, systemic vascular resistance, pulmonary vascular resistance, heart rate and cardiac stroke volume were derived from these measurements. Anaesthetised turtles showed cardiovascular characteristics that were similar to those of non-apnoeic non-anaesthetised turtles, because anaesthesia blocked the cholinergically mediated constriction of the pulmonary artery that is normally associated with apnoea. As a result, the anaesthetised turtles exhibited a large net left-to-right shunt, and the adrenergic responses could be observed without confounding changes resulting from apnoea. Potent α-adrenergic vasoconstriction and weaker β-adrenergic vasodilation were discovered in the systemic circulation. Modest β-adrenergic vasodilation and possible weak α-adrenergic vasodilation were discovered in the pulmonary circulation. This adrenergically mediated vasoactivity produced the largest range of cardiac shunts observed so far in turtles. Regression analysis revealed that 97% of the variability in the cardiac shunts could be accounted for by the ratio of the pulmonary and systemic resistances. Thus, we conclude that, independent of whether the pulmonary vascular resistance is modulated(as during apnoea) or the systemic resistance is modulated with adrenergic mechanisms (as shown here), the consequences on the cardiac shunt patterns are the same because they are determined primarily by the ratios of the pulmonary and systemic resistance.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3