Rapid patterning and zonal differentiation in a two-dimensionalDictyosteliumcell mass: the role of pH and ammonia

Author:

Sawai Satoshi1,Hirano Takashi2,Maeda Yasuo2,Sawada Yasuji3

Affiliation:

1. Graduate School of Information Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

2. Biological Institute, Graduate School of Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

3. Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Abstract

SUMMARYRecently it was demonstrated that a rapidly forming, self-organizing pattern that emerges within two-dimensional Dictyostelium discoideumcell cultures could later give rise to stripes of distinct zones, each comprising different cell types. Here we report physiological aspects of the initial rapid patterning and its relationship to cell differentiation. We found that as the temperature is lowered the characteristic length of the pattern increases. From this we estimated the activation energy of the patterning kinetics. Fluorescence of fluorescein-conjugated dextran revealed that the cytosolic pH of cells in the inside zone becomes lower than that in the outer zone facing the air. The patterning could be inhibited by addition of the plasma-membrane proton pump inhibitors diethystilbestrol (DES) or miconazole. Preincubation of cells with weak acid delayed the timing of the patterning, whereas weak base hastened it. A pH-indicating dye revealed localized accumulation of ammonia in the extracellular space. These results suggest that gradients of secreted metabolites may be directly responsible for the rapid patterning and its consequence on cell differentiation in a confined geometrical situation. Possible diffusible candidate molecules and a reaction scheme coupled to the imposed oxygen gradient are discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3