Ammonotely in a passerine nectarivore: the influence of renal and post-renal modification on nitrogenous waste product excretion

Author:

Roxburgh Lizanne1,Pinshow Berry1

Affiliation:

1. Mitrani Department of Desert Ecology, Jacob Blaustein Institute for Desert Research and Department of Life Sciences, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Israel

Abstract

SUMMARYMost aquatic vertebrates are ammonotelic, whereas terrestrial vertebrates are typically uricotelic or ureotelic. However, the principal form of nitrogenous waste product in the urine of an animal may vary, depending on environmental conditions. Anna's hummingbird (Calypte anna) was found to switch from uricotely at high ambient temperature (Ta)to ammonotely at lower Ta, when energy demands and consequent nectar intake rates were high. In extension of this, we hypothesised that nectarivorous birds would switch from uricotely to ammonotely when water intake rates were high or when protein or salt intake rates were low. We examined the influence of water, electrolyte and protein intake and of Ta on the excretion of ammonia, urea and urate (uric acid and its salts) in nectarivorous Palestine sunbirds(Nectarinia osea). The proportion of ammonia in ureteral urine and excreted fluid was not influenced by total water or salt intake or by Ta. Protein intake did not influence nitrogenous waste product concentrations in ureteral urine. However, when protein intake was reduced, the proportion of ammonia in excreted fluid was higher because of the reduced urate concentration. This reduction in urate concentration leads to`apparent' ammonotely. We suggest that ammonotely may not be a unique feature of nectarivorous birds. It could occur in any species in which breakdown of urate in the hindgut allows the uric acid-nitrogen concentration in the excreta to fall below that of the ammonia-nitrogen concentration.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3