The archaeogastropod mollusc Haliotis iris: tissue and blood metabolites and allosteric regulation of haemocyanin function

Author:

Behrens Jane W.12,Elias John P.32,Taylor H. Harry2,Weber Roy E.1

Affiliation:

1. Department of Zoophysiology, Institute Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark,

2. Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

3. School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia and

Abstract

SUMMARY We investigated divalent cation and anaerobic end-product concentrations and the interactive effects of these substances and pH on haemocyanin oxygen-binding (Hc-O2) in the New Zealand abalone Haliotis iris. During 24 h of environmental hypoxia (emersion), d-lactate and tauropine accumulated in the foot and shell adductor muscles and in the haemolymph of the aorta, the pedal sinus and adductor muscle lacunae, whereas l-lactate was not detected. Intramuscular and haemolymph d-lactate concentrations were similar, but tauropine accumulated to much higher levels in muscle tissues. Repeated disturbance and short-term exposure to air over 3 h induced no accumulation of d- or l-lactate and no change in [Ca2+], [Mg2+], pH and O2-binding properties of the native haemolymph. The haemolymph showed a low Hc-O2 affinity, a large reverse Bohr effect and marked cooperativity. Dialysis increased Hc-O2 affinity, obliterated cooperativity and decreased the pH-sensitivity of O2 binding. Replacing Mg2+ and Ca2+ restored the native O2-binding properties and the reverse Bohr shift. l- and d-lactate exerted minor modulatory effects on O2-affinity. At in vivo concentrations of Mg2+ and Ca2+, the cooperativity is dependent largely on Mg2+, which modulates the O2 association equilibrium constants of both the high-affinity (KR) and the low-affinity (KT) states (increasing and decreasing, respectively). This allosteric mechanism contrasts with that encountered in other haemocyanins and haemoglobins. The functional properties of H. iris haemocyanin suggest that high rates of O2 delivery to the tissues are not a priority but are consistent with the provision of a large O2 reserve for facultatively anaerobic tissues during internal hypoxia associated with clamping to the substratum.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3