Electrophysiological properties of the tongue epithelium of the toad Bufo marinus

Author:

Baker Timothy K.1,Rios Karina1,Hillyard Stanley D.1

Affiliation:

1. Department of Biological Sciences, University of Nevada Las Vegas,Las Vegas, NV 89154-4004, USA

Abstract

SUMMARY The dorsal lingual epithelium from the tongue of the toad Bufo marinus was mounted in an Ussing-type chamber, and the short-circuit current (Isc) was measured using a low-noise voltage clamp. With NaCl Ringer bathing the mucosal and serosal surfaces of the isolated tissue, an outwardly directed (mucosa-positive) Isc was measured that averaged -10.71±0.82 μA cm-2 (mean ± S.E.M., N=24) with a resistance of 615±152 Ω cm2 (mean ± S.E.M., N=10). Substitution of chloride with sulfate as the anion produced no significant change in Isc. Fluctuation analysis with either NaCl or Na2SO4 Ringer bathing both sides of the tissue revealed a spontaneous Lorentzian component, suggesting that the Isc was the result of K+ secretion through spontaneously fluctuating channels in the apical membrane of the epithelium. This hypothesis was supported by the reversible inhibition of Isc by Ba2+ added to the mucosal Ringer. Analysis of the kinetics of Ba2+ inhibition of Isc indicates that there might be more than one type of K+ channel carrying the Isc. This hypothesis was supported by power spectra obtained with a serosa-to-mucosa K+gradient, which could be fitted to two Lorentzian components. At present, the K+ secretory current cannot be localized to taste cells or other cells that might be associated with the secretion of saliva or mucus. Nonetheless, the resulting increase in [K+] in fluid bathing the mucosal surface of the tongue could presumably affect the sensitivity of the taste cells. These results contrast with those from the mammalian tongue, in which a mucosa-negative Isc results from amiloride-sensitive Na+ transport.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3