Affiliation:
1. Department of Entomology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97330, USA and
2. Department of Invertebrate Physiology, Warsaw University, 02-096 Warsaw, Poland
Abstract
SUMMARY
Recent studies have demonstrated that the peripheral tissues of vertebrates and invertebrates contain circadian clocks; however, little is known about their functions and the rhythmic outputs that they generate. To understand clock-controlled rhythms at the cellular level, we investigated a circadian clock located in the reproductive system of a male moth (the cotton leaf worm Spodoptera littoralis) that is essential for the production of fertile spermatozoa. Previous work has demonstrated that spermatozoa are released from the testes in a daily rhythm and are periodically stored in the upper vas deferens (UVD). In this paper, we demonstrate a circadian rhythm in pH in the lumen of the UVD, with acidification occurring during accumulation of spermatozoa in the lumen. The daily rhythm in pH correlates with a rhythmic increase in the expression of a proton pump, the vacuolar H+-ATPase (V-ATPase), in the apical portion of the UVD epithelium. Rhythms in pH and V-ATPase persist in light/dark cycles and constant darkness, but are abolished in constant light, a condition that disrupts clock function and renders spermatozoa infertile. Treatment with colchicine impairs the migration of V-ATPase-positive vesicles to the apical cell membrane and abates the acidification of the UVD lumen. Bafilomycin, a selective inhibitor of V-ATPase activity, also prevents the decline in luminal pH. We conclude that the circadian clock generates a rhythm of luminal acidification by regulating the levels and subcellular distribution of V-ATPase in the UVD epithelium. Our data provide the first evidence for circadian control of V-ATPase, the fundamental enzyme that provides the driving force for numerous secondary transport processes. They also demonstrate how circadian rhythms displayed by individual cells contribute to the synchrony of physiological processes at the organ level.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献