Geometric control of ciliated band regulatory states in the sea urchin embryo

Author:

Barsi Julius C.1,Li Enhu12,Davidson Eric H.1

Affiliation:

1. Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA

2. Warp Drive Bio, LLC, 400 Technology Square, Cambridge, MA 02139, USA

Abstract

The trapezoidal ciliated band (CB) of the postgastrular sea urchin embryo surrounds the oral ectoderm, separating it from adjacent embryonic territories. Once differentiated, the CB is composed of densely arranged cells bearing long cilia that endow the larva with locomotion and feeding capability. The spatial pattern from which the CB will arise is first evidenced during pregastrular stages by expression of the pioneer gene onecut. Immediately after gastrulation, the CB consists of four separate regulatory state domains, each of which expresses a unique set of transcription factors: (1) the oral apical CB, located within the apical neurogenic field; (2) the animal lateral CB, which bilaterally separates the oral from aboral ectoderm; (3) the vegetal lateral CB, which bilaterally serves as signaling centers; and (4) the vegetal oral CB, which delineates the boundary with the underlying endoderm. Remarkably, almost all of the regulatory genes specifically expressed within these domains are downregulated by interference with SoxB1 expression, implying their common activation by this factor. Here, we show how the boundaries of the CB subdomains are established, and thus ascertain the design principle by which the geometry of this unique and complex regulatory state pattern is genomically controlled. Each of these boundaries, on either side of the CB, is defined by spatially confined transcriptional repressors, the products of regulatory genes operating across the border of each subdomain. In total this requires deployment of about ten different repressors, which we identify in this work, thus exemplifying the complexity of information required for spatial regulatory organization during embryogenesis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3