PKCγ knockout mouse lenses are more susceptible to oxidative stress damage

Author:

Lin Dingbo1,Barnett Micheal1,Lobell Samuel1,Madgwick Daniel1,Shanks Denton1,Willard Lloyd2,Zampighi Guido A.3,Takemoto Dolores J.1

Affiliation:

1. Department of Biochemistry, Kansas State University, Manhattan, KS 66506,USA

2. Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA

3. Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, Los Angeles, CA90095, USA

Abstract

SUMMARYCataracts, or lens opacities, are the leading cause of blindness worldwide. Cataracts increase with age and environmental insults, e.g. oxidative stress. Lens homeostasis depends on functional gap junctions. Knockout or missense mutations of lens gap junction proteins, Cx46 or Cx50, result in cataractogenesis in mice. We have previously demonstrated that protein kinase Cγ (PKCγ) regulates gap junctions in the lens epithelium and cortex. In the current study, we further determined whether PKCγ control of gap junctions protects the lens from cataractogenesis induced by oxidative stress in vitro, using PKCγ knockout and control mice as our models. The results demonstrate that PKCγ knockout lenses are normal at 2 days post-natal when compared to control. However, cell damage, but not obvious cataract, was observed in the lenses of 6-week-old PKCγ knockout mice,suggesting that the deletion of PKCγ causes lenses to be more susceptible to damage. Furthermore, in vitro incubation or lens oxidative stress treatment by H2O2 significantly induced lens opacification (cataract) in the PKCγ knockout mice when compared to controls. Biochemical and structural results also demonstrated that H2O2 activation of endogenous PKCγ resulted in phosphorylation of Cx50 and subsequent inhibition of gap junctions in the lenses of control mice, but not in the knockout. Deletion of PKCγaltered the arrangement of gap junctions on the cortical fiber cell surface,and completely abolished the inhibitory effect of H2O2on lens gap junctions. Data suggest that activation of PKCγ is an important mechanism regulating the closure of the communicating pathway mediated by gap junction channels in lens fiber cells. The absence of this regulatory mechanism in the PKCγ knockout mice may cause those lenses to have increased susceptibility to oxidative damage.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3