Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians

Author:

Iglesias Marta1,Gomez-Skarmeta Jose Luis2,Saló Emili1,Adell Teresa1

Affiliation:

1. Departament de Genètica, Universitat de Barcelona, 08028 Barcelona,Spain.

2. Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013 Sevilla, Spain.

Abstract

Little is known about the molecular mechanisms responsible for axis establishment during non-embryonic processes such as regeneration and homeostasis. To address this issue, we set out to analyze the role of the canonical Wnt pathway in planarians, flatworms renowned for their extraordinary morphological plasticity. Canonical Wnt signalling is an evolutionarily conserved mechanism to confer polarity during embryonic development, specifying the anteroposterior (AP) axis in most bilaterians and the dorsoventral (DV) axis in early vertebrate embryos. β-Catenin is a key element in this pathway, although it is a bifunctional protein that is also involved in cell-cell adhesion. Here, we report the characterization of two β-catenin homologs from Schmidtea mediterranea(Smed-βcatenin1/2). Loss of function of Smed-βcatenin1, but not Smed-βcatenin2, in both regenerating and intact planarians, generates radial-like hypercephalized planarians in which the AP axis disappears but the DV axis remains unaffected, representing a unique example of a striking body symmetry transformation. The radial-like hypercephalized phenotype demonstrates the requirement for Smed-βcatenin1 in AP axis re-establishment and maintenance, and supports a conserved role for canonical Wnt signalling in AP axis specification, whereas the role of β-catenin in DV axis establishment would be a vertebrate innovation. When considered alongside the protein domains present in each S. mediterranea β-catenin and the results of functional assays in Xenopus embryos demonstrating nuclear accumulation and axis induction with Smed-βcatenin1, but not Smed-βcatenin2, these data suggest that S. mediterraneaβ-catenins could be functionally specialized and that only Smed-βcatenin1 is involved in Wnt signalling.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3