Regulation of ocular lens development by Smad-interacting protein 1 involving Foxe3 activation

Author:

Yoshimoto Aki1,Saigou Yuka1,Higashi Yujiro1,Kondoh Hisato1

Affiliation:

1. Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka,Suita, Osaka 565-0871, Japan

Abstract

Sip1, a Smad-binding zinc-finger homeodomain transcription factor, has essential functions in embryonic development, but its role in individual tissues and the significance of its interaction with Smad proteins have not been fully characterized. In the lens lineage, Sip1 expression is activated after lens placode induction, and as the lens develops, the expression is localized in the lens epithelium and bow region where immature lens fibers reside. The lens-lineage-specific inactivation of the Sip1 gene was performed using mice homozygous for floxed Sip1 that carry a lens-specific Cre recombinase gene. This caused the development of a small hollow lens connected to the surface ectoderm, identifying two Sip1-dependent steps in lens development. The persistence of the lens stalk resembles a defect in Foxe3 mutant mice, and Sip1-defective lenses lose Foxe3 expression, placing Foxe3 downstream of Sip1. In the Sip1-defective lens, β-crystallin-expressing immature lens fiber cells were produced, but γ-crystallin-expressing mature fiber cells were absent, indicating the requirement for Sip1 activity in lens fiber maturation. A 6.2 kb Foxe3 promoter region controlled lacZ transgene expression in the developing lens, where major and minor lens elements were identified upstream of -1.26 kb. Using transfection assays, the Foxe3promoter was activated by Sip1 and this activation is further augmented by Smad8 in the manner dependent on the Smad-binding domain of Sip1. This Sip1-dependent activation and its augmentation by Smad8 occur using the proximal 1.26 kb promoter, and are separate from lens-specific regulation. This is the first demonstration of the significance of Smad interaction in modulating Sip1 activity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3