Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro

Author:

Ng Chee Ping1,Hinz Boris2,Swartz Melody A.13

Affiliation:

1. Department of Chemical and Biological Engineering, Northwestern University, Evanston, 633 Clark Street, Chicago, IL 60208, USA

2. Laboratory of Cell Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

3. Integrative Biosciences Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Abstract

The differentiation of fibroblasts to contractile myofibroblasts, which is characterized by de novo expression of α-smooth muscle actin (α-SMA), is crucial for wound healing and a hallmark of tissue scarring and fibrosis. These processes often follow inflammatory events, particularly in soft tissues such as skin, lung and liver. Although inflammatory cells and damaged epithelium can release transforming growth factor β1 (TGF-β1), which largely mediates myofibroblast differentiation, the biophysical environment of inflammation and tissue regeneration, namely increased interstitial flow owing to vessel hyperpermeability and/or angiogenesis, may also play a role. We demonstrate that low levels of interstitial (3D) flow induce fibroblast-to-myofibroblast differentiation as well as collagen alignment and fibroblast proliferation, all in the absence of exogenous mediators. These effects were associated with TGF-β1 induction, and could be eliminated with TGF-β1 blocking antibodies. Furthermore, α1β1 integrin was seen to play an important role in the specific response to flow, as its inhibition prevented fibroblast differentiation and subsequent collagen alignment but did not block their ability to contract the gel in a separate floating gel assay. This study suggests that the biophysical environment that often precedes fibrosis, such as swelling, increased microvascular permeability and increased lymphatic drainage – all which involve interstitial fluid flow – may itself play an important role in fibrogenesis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 318 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3