Involvement of sulfated biopolymers in adhesive secretions produced by marine invertebrates

Author:

Hennebert Elise1,Gregorowicz Edwicka2,Flammang Patrick2ORCID

Affiliation:

1. Cell Biology Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium

2. Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium

Abstract

Many marine invertebrates use adhesive secretions to attach to underwater surfaces and functional groups borne by their adhesive proteins and carbohydrates, such as catechols and phosphates, play a key role in adhesion. The occurrence of sulfates as recurrent moieties in marine bioadhesives suggests that they could also be involved. However, in most cases, their presence in the adhesive material remains speculative. We investigated the presence of sulfated biopolymers in five marine invertebrates representative of the four types of adhesion encountered in the sea: mussels and tubeworms for permanent adhesion, limpets for transitory adhesion, sea stars for temporary adhesion, and sea cucumbers for instantaneous adhesion. The dry adhesive material of mussels, sea stars and sea cucumbers contained about 1% of sulfate. Using anti-sulfotyrosine antibodies and Alcian blue staining, sulfated proteins and sulfated proteoglycans and/or polysaccharides were identified in the secretory cells and adhesive secretions of all species except the tubeworm. Sulfated proteoglycans appear to play a role only in the non-permanent adhesion of sea stars and limpets in which they could mediate cohesion within the adhesive material. In mussels and sea cucumbers, sulfated biopolymers would rather have an anti-adhesive function, precluding self-adhesion.

Funder

the Fund for Scientific Research of Belgium

COST Action European Network of Bioadhesion Expertise

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3