Preferred movement patterns during a simple bouncing task

Author:

Raburn Caroline E.1,Merritt Kristen J.1,Dean Jesse C.1

Affiliation:

1. Medical University of South Carolina, 77 President Street, Office 106, Charleston, SC 29245-9600, USA

Abstract

SUMMARY Elastic tissues in the human body can store and return mechanical energy passively, reducing the metabolic cost of cyclical movements. However, it is not clear whether humans prefer movement patterns that optimize this storage and return. We investigated the preferred movement pattern during a bouncing task for which non-invasive techniques can identify the resonant frequency, which is the least metabolically costly. We quantified the preferred and resonant bounce frequencies for three mechanical conditions. During 'normal' trials, subjects bounced while reclined on a sled that moves along a track. During 'added mass' trials, mass was added to the sled. During 'added stiffness' trials, a spring was attached between the sled and the supporting frame, parallel to the track. Subsequently, we quantified the preferred bounce frequencies during ischemia, a technique that disrupts the available sensory feedback. Mechanical condition had a significant effect on both the preferred and resonant frequencies. Changes in preferred frequency scaled with resonant frequency, but the preferred frequency was significantly lower than the resonant frequency. These results indicate that humans adapt their preferred bouncing pattern in response to changes in mechanical condition. Humans may prefer a lower than resonant frequency because of an inability to sense metabolic cost during our relatively short trials. In contrast, during ischemia the preferred bounce frequency remained constant even when mechanical condition was varied, indicating that feedback is necessary to adapt the preferred frequency to changes in mechanics. These findings suggest that disrupted sensory feedback may prevent humans from choosing the optimal movement pattern.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3