Biomechanical and energetic determinants of the walk–trot transition in horses

Author:

Griffin Timothy M.1,Kram Rodger2,Wickler Steven J.3,Hoyt Donald F.3

Affiliation:

1. Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA

2. Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA

3. Equine Research Center and Departments of Animal and Veterinary Sciences and Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA

Abstract

SUMMARYWe studied nine adult horses spanning an eightfold range in body mass(Mb) (90–720 kg) and a twofold range in leg length(L) (0.7–1.4 m). We measured the horses' walk–trot transition speeds using step-wise speed increments as they locomoted on a motorized treadmill. We then measured their rates of oxygen consumption over a wide range of walking and trotting speeds. We interpreted the transition speed results using a simple inverted-pendulum model of walking in which gravity provides the centripetal force necessary to keep the leg in contact with the ground. By studying a large size range of horses, we were naturally able to vary the absolute walking speed that would produce the same ratio of centripetal to gravitational forces. This ratio,(Mbv2/L)/(Mbg),reduces to the dimensionless Froude number(v2/gL), where v is forward speed, L is leg length and g is gravitational acceleration. We found that the absolute walk–trot transition speed increased with size from 1.6 to 2.3 m s–1, but it occurred at nearly the same Froude number (0.35). In addition, horses spontaneously switched between gaits in a narrow range of speeds that corresponded to the metabolically optimal transition speed. These results support the hypotheses that the walk–trot transition is triggered by inverted-pendulum dynamics and occurs at the speed that maximizes metabolic economy.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3