A unique and specific interaction between αT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs

Author:

Goossens Steven12,Janssens Barbara12,Bonné Stefan12,De Rycke Riet12,Braet Filip12,van Hengel Jolanda12,van Roy Frans12

Affiliation:

1. Department for Molecular Biomedical Research, VIB, Ghent University, B-9052 Ghent, Belgium

2. Department of Molecular Biology, Ghent University, B-9052 Ghent, Belgium

Abstract

Alpha-catenins play key functional roles in cadherin-catenin cell-cell adhesion complexes. We previously reported on αT-catenin, a novel member of the α-catenin protein family. αT-catenin is expressed predominantly in cardiomyocytes, where it colocalizes with αE-catenin at the intercalated discs. Whether αT- and αE-catenin have specific or synergistic functions remains unknown. In this study we used the yeast two-hybrid approach to identify specific functions of αT-catenin. An interaction between αT-catenin and plakophilins was observed and subsequently confirmed by co-immunoprecipitation and colocalization. Interaction with the amino-terminal part of plakophilins appeared to be specific for the central `adhesion-modulation' domain of αT-catenin. In addition, we showed, by immuno-electron microscopy, that desmosomal proteins in the heart localize not only to the desmosomes in the intercalated discs but also at adhering junctions with hybrid composition. We found that in the latter junctions, endogenous plakophilin-2 colocalizes with αT-catenin. By providing an extra link between the cadherin-catenin complex and intermediate filaments, the binding of αT-catenin to plakophilin-2 is proposed to be a means of modulating and strengthening cell-cell adhesion between cardiac muscle cells. This could explain the devastating effect of plakophilin-2 mutations on cell junction stability in intercalated discs, which lead to cardiac muscle malfunction.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3