S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells

Author:

Mandinova Anna1,Soldi Raffaella1,Graziani Irene1,Bagalá Cinzia1,Bellum Stephen1,Landriscina Matteo2,Tarantini Francesca3,Prudovsky Igor1,Maciag Thomas1

Affiliation:

1. Center for Molecular Medicine, Maine Medical Center Research Institute,Scarborough, ME 04074, USA

2. Department of Oncology, Catholic University of Rome, School of Medicine, Rome 00168, Italy

3. Department of Geriatric Medicine, University of Florence, School of Medicine,Florence 50139, Italy

Abstract

Copper is involved in the promotion of angiogenic and inflammatory events in vivo and, although recent clinical data has demonstrated the potential of Cu2+ chelators for the treatment of cancer in man, the mechanism for this activity remains unknown. We have previously demonstrated that the signal peptide-less angiogenic polypeptide, FGF1, uses intracellular Cu2+ to facilitate the formation of a multiprotein aggregate that enables the release of FGF1 in response to stress and that the expression of the precursor form but not the mature form of IL-1α represses the stress-induced export of FGF1 from NIH 3T3 cells. We report here that IL-1α is a Cu2+-binding protein and human U937 cells, like NIH 3T3 cells, release IL-1α in response to temperature stress in a Cu2+-dependent manner. We also report that the stress-induced export of IL-1α involves the intracellular association with the Cu2+-binding protein, S100A13. In addition, the expression of a S100A13 mutant lacking a sequence novel to this gene product functions as a dominant-negative repressor of IL-1α release, whereas the expression of wild-type S100A13 functions to eliminate the requirement for stress-induced transcription. Lastly, we present biophysical evidence that IL-1α may be endowed with molten globule character, which may facilitate its release through the plasma membrane. Because Cu2+ chelation also represses the release of FGF1, the ability of Cu2+ chelators to potentially serve as effective clinical anti-cancer agents may be related to their ability to limit the export of these proinflammatory and angiogenic signal peptide-less polypeptides into the extracellular compartment.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3