Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography

Author:

Lacomble Sylvain1,Vaughan Sue1,Gadelha Catarina1,Morphew Mary K.2,Shaw Michael K.1,McIntosh J. Richard2,Gull Keith1

Affiliation:

1. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK

2. Laboratory for 3-D Electron Microscopy of Cells, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA

Abstract

This study uses electron tomography linked to a variety of other EM methods to provide an integrated view of the flagellar pocket and basal body area of the African trypanosome procyclic trypomastigote. We reveal the pocket as an asymmetric membranous `balloon' with two boundary structures. One of these – the collar – defines the flagellum exit point. The other defines the entry point of the flagellum into the pocket and consists of both an internal transitional fibre array and an external membrane collarette. A novel set of nine radial fibres is described in the basal body proximal zone. The pocket asymmetry is invariably correlated with the position of the probasal body and Golgi. The neck region, just distal to the flagellum exit site, is a specialised area of membrane associated with the start of the flagellum attachment zone and signifies the point where a special set of four microtubules, nucleated close to the basal bodies, joins the subpellicular array. The neck region is also associated with the single Golgi apparatus of the cell. The flagellar exit point interrupts the subpellicular microtubule array with discrete endings of microtubules at the posterior side. Overall, our studies reveal a highly organised, yet dynamic, area of cytoplasm and will be informative in understanding its function.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3