Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells

Author:

Feinshreiber Lori1,Singer-Lahat Dafna1,Friedrich Reut2,Matti Ulf3,Sheinin Anton2,Yizhar Ofer2,Nachman Rachel1,Chikvashvili Dodo1,Rettig Jens3,Ashery Uri2,Lotan Ilana1

Affiliation:

1. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel

2. Department of Neurobiochemistry, Life Science Institute, Tel Aviv University, 69978 Tel Aviv, Israel

3. Physiologisches Institut, Universität des Saarlandes, 66421 Homburg/Saar, Germany

Abstract

Regulation of exocytosis by voltage-gated K+ channels has classically been viewed as inhibition mediated by K+ fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K+ flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesicle release from dorsal-root-ganglion neurons and is mediated by direct association of Kv2.1 with syntaxin. We further show in adrenal chromaffin cells that facilitation induced by both wild-type and non-conducting mutant Kv2.1 channels in response to long stimulation persists during successive stimulation, and can be attributed to an increased number of exocytotic events and not to changes in single-spike kinetics. Moreover, rigorous analysis of the pools of released vesicles reveals that Kv2.1 enhances the rate of vesicle recruitment during stimulation with high Ca2+, without affecting the size of the readily releasable vesicle pool. These findings place a voltage-gated K+ channel among the syntaxin-binding proteins that directly regulate pre-fusion steps in exocytosis.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3