Defective acidification of the biosynthetic pathway in cystic fibrosis

Author:

Barasch Jonathan1,Al-Awqati Qais1

Affiliation:

1. Departments of Medicine and Physiology, College of Physicians and Surgeons of Columbia University, 630 W 168th St, New York, NY 10032, USA

Abstract

SUMMARY Cystic fibrosis is associated with defective epithelial sodium chloride and fluid secretion in epithelia. In addition, there is widespread reductions in sialylation of secreted proteins and increases in the sulfation and fucosylation of mucus glycoproteins. The major morbidity in the disease is due to the colonization of respiratory epithelia by Pseudomonas. The cystic fibrosis gene (CFTR) is a cyclic AMP activated Cl channel, which when mutated is retained in the endoplasmic reticulum. We postulate that this Cl channel is responsible for effective acidification of the Golgi. In CF cells, we demonstrate the Golgi pH is higher than in normal cells and suggest that the abnormalities in glycoprotein biosynthesis is due to changes in the kinetics of sialyl transferase, a pH sensitive enzyme. Defects in sialylation also result in decreased sialylation of glycolipids and asialogangliosides are potential Pseudomonas receptors.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3