Molecular markers for identified neuroblasts in the developing brain of Drosophila

Author:

Urbach Rolf1,Technau Gerhard M.1

Affiliation:

1. Institut für Genetik, Universität Mainz, D-55099 Mainz,Germany

Abstract

The Drosophila brain develops from the procephalic neurogenic region of the ectoderm. About 100 neural precursor cells (neuroblasts)delaminate from this region on either side in a reproducible spatiotemporal pattern. We provide neuroblast maps from different stages of the early embryo(stages 9, 10 and 11, when the entire population of neuroblasts has formed),in which about 40 molecular markers representing the expression patterns of 34 different genes are linked to individual neuroblasts. In particular, we present a detailed description of the spatiotemporal patterns of expression in the procephalic neuroectoderm and in the neuroblast layer of the gap genes empty spiracles, hunchback, huckebein, sloppy paired 1 and tailless; the homeotic gene labial; the early eye genes dachshund, eyeless and twin of eyeless; and several other marker genes (including castor, pdm1, fasciclin 2, klumpfuss, ladybird,runt and unplugged). We show that based on the combination of genes expressed, each brain neuroblast acquires a unique identity, and that it is possible to follow the fate of individual neuroblasts through early neurogenesis. Furthermore, despite the highly derived patterns of expression in the procephalic segments, the co-expression of specific molecular markers discloses the existence of serially homologous neuroblasts in neuromeres of the ventral nerve cord and the brain. Taking into consideration that all brain neuroblasts are now assigned to particular neuromeres and individually identified by their unique gene expression, and that the genes found to be expressed are likely candidates for controlling the development of the respective neuroblasts, our data provide a basic framework for studying the mechanisms leading to pattern and cell diversity in the Drosophilabrain, and for addressing those mechanisms that make the brain different from the truncal CNS.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference81 articles.

1. Bhat, K. M. (1999). Segment polarity genes in neuroblast formation and identity specification during Drosophilaneurogenesis. BioEssays21,472-485.

2. Bhat, K. M., van Beers, E. H. and Bhat, P.(2000). Sloppy paired acts as the downstream target of wingless in the Drosophila CNS and interaction between sloppy paired and gooseberry inhibits sloppy pairedduring neurogenesis. Development127,655-665.

3. Bier, E., Vaessin, H., Younger-Shepherd, S., Jan, L. Y. and Jan,Y. N. (1992). deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product. Genes Dev.6,2137-2151.

4. Bossing, T., Udolph, G., Doe, C. Q. and Technau, G. M.(1996). The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol.179, 41-64.

5. Brand, M., Jarman, A. P., Jan, L. Y. and Jan, Y. N.(1993). asense is a Drosophila neural precursor gene and is capable of initiating sense organ formation. Development119,1-17.

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3