Six1is required for the early organogenesis of mammalian kidney

Author:

Xu Pin-Xian1,Zheng Weiming1,Huang Li1,Maire Pascal2,Laclef Christine2,Silvius Derek1

Affiliation:

1. McLaughlin Research Institute, 1520 23rd Street South, Great Falls, MT 59405,USA

2. INSERM 129, ICGM, F-75014 Paris, France

Abstract

The murine Six gene family, homologous to Drosophila sine oculis(so) which encodes a homeodomain transcription factor, is composed of six members (Six1-6). Among the six members, only the Six2gene has been previously shown to be expressed early in kidney development,but its function is unknown. We have recently found that the Six1gene is also expressed in the kidney. In the developing kidney, Six1is expressed in the uninduced metanephric mesenchyme at E10.5 and in the induced mesenchyme around the ureteric bud at E11.5. At E17.5 to P0, Six1 expression became restricted to a subpopulation of collecting tubule epithelial cells. To study its in vivo function, we have recently generated Six1 mutant mice. Loss of Six1 leads to a failure of ureteric bud invasion into the mesenchyme and subsequent apoptosis of the mesenchyme. These results indicate that Six1 plays an essential role in early kidney development. In Six1-/- kidney development, we have found that Pax2, Six2 and Sall1expression was markedly reduced in the metanephric mesenchyme at E10.5,indicating that Six1 is required for the expression of these genes in the metanephric mesenchyme. In contrast, Eya1 expression was unaffected in Six1-/- metanephric mesenchyme at E10.5,indicating that Eya1 may function upstream of Six1. Moreover, our results show that both Eya1 and Six1expression in the metanephric mesenchyme is preserved in Pax2-/- embryos at E10.5, further indicating that Pax2 functions downstream of Eya1 and Six1 in the metanephric mesenchyme. Thus, the epistatic relationship between Pax, Eya and Six genes in the metanephric mesenchyme during early kidney development is distinct from a genetic pathway elucidated in the Drosophila eye imaginal disc. Finally, our results show that Eya1 and Six1genetically interact during mammalian kidney development, because most compound heterozygous embryos show hypoplastic kidneys. These analyses establish a role for Six1 in the initial inductive step for metanephric development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3