Three-dimensional structural analysis reveals a Cdk5-mediated kinase cascade regulating hepatic biliary network branching in zebrafish

Author:

Dimri Manali1,Bilogan Cassandra1ORCID,Pierce Lain X.1,Naegele Gregory1,Vasanji Amit2,Gibson Isabel1,McClendon Allyson1,Tae Kevin1,Sakaguchi Takuya F.13ORCID

Affiliation:

1. Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

2. ImageIQ Inc., Cleveland, OH 44195, USA

3. Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA

Abstract

The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.

Funder

National Institutes of Health

Cleveland Digestive Diseases Research Core Center

Cleveland Clinic

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3