Polysialic acid controls NCAM signals at cell–cell contacts to regulate focal adhesion independent from FGF receptor activity

Author:

Eggers Katinka1,Werneburg Sebastian1,Schertzinger Andrea1,Abeln Markus1,Schiff Miriam1,Scharenberg Matthias Alexander1,Burkhardt Hannelore1,Mühlenhoff Martina1,Hildebrandt Herbert1

Affiliation:

1. Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany

Abstract

The polysialic acid (polySia) modification of the neural cell adhesion molecule NCAM is a key regulator of cell migration. Yet its role in NCAM-dependent or NCAM-independent modulation of motility and cell–matrix adhesion is largely unresolved. Here, we demonstrate that loss of polySia attenuates tumour cell migration and augments the number of focal adhesions in a cell–cell contact- and NCAM-dependent manner. In the presence or absence of polySia, NCAM never colocalised with focal adhesions but was enriched at cell–cell contacts. Focal adhesion of polySia- and NCAM-negative cells was enhanced by incubation with soluble NCAM or by removing polySia from heterotypic contacts with polySia–NCAM-positive cells. Focal adhesion was compromised by the src-family kinase inhibitor PP2, whereas loss of polySia or exposure to NCAM promoted the association of p59Fyn with the focal adhesion scaffolding protein paxillin. Unlike other NCAM responses, NCAM-induced focal adhesion was not prevented by inhibiting FGF receptor activity and could be evoked by NCAM fragments comprising immunoglobulin domains three and four but not by the NCAM fibronectin domains alone or by an NCAM-derived peptide known to interact with and activate FGF receptors. Together, these data indicate that polySia regulates cell motility through NCAM-induced but FGF-receptor-independent signalling to focal adhesions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3