Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells
Author:
El-Amraoui Aziz1, Petit Christine1
Affiliation:
1. Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
Abstract
Defects in myosin VIIa, the PDZ-domain-containing protein harmonin, cadherin 23 and protocadherin 15 (two cadherins with large extracellular regions), and the putative scaffolding protein Sans underlie five genetic forms of Usher syndrome type I (USH1), the most frequent cause of hereditary deafness-blindness in humans. All USH1 proteins are localised within growing stereocilia and/or the kinocilium that make up the developing auditory hair bundle, the mechanosensitive structure receptive to sound stimulation. Cadherin 23 has been shown to be a component of fibrous links interconnecting the growing stereocilia as well as the kinocilium and the nearest tall stereocilia. A similar function is anticipated for protocadherin 15. Multiple direct interactions between USH1 proteins have been demonstrated. In particular, harmonin b can bind to the cytoplasmic regions of cadherin 23 and protocadherin 15, and to F-actin, and thus probably anchors these cadherins to the actin filaments filling the stereocilia. Myosin VIIa and Sans are both involved in the sorting and/or targeting of harmonin b to the stereocilia. Together, this suggests that the disorganisation of the hair bundles observed in mice mutants lacking orthologues of USH1 proteins may result from a defect of hair-bundle-link-mediated adhesion forces. Moreover, several recent evidences suggest that some genes defective in Usher type II syndrome also encode interstereocilia links, thus bridging the pathogenic pathways of USH1 and USH2 hearing impairment. Additional functions of USH1 proteins in the inner ear and the retina are evident from other phenotypic abnormalities observed in these mice. In particular, myosin VIIa could act at the interface between microtubule- and actin-based transport.
Publisher
The Company of Biologists
Reference80 articles.
1. Adato, A., Kikkawa, Y., Reiners, J., Alagramam, K. N., Weil, D., Yonekawa, H., Wolfrum, U., El-Amraoui, A. and Petit, C. (2005). Interactions in the network of Usher syndrome type 1 proteins. Hum. Mol. Genet.14, 347-356. 2. Ahmed, Z. M., Riazuddin, S., Bernstein, S. L., Ahmed, Z., Khan, S., Griffith, A. J., Morell, R. J., Friedman, T. B., Riazuddin, S. and Wilcox, E. R. (2001). Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet.69, 25-34. 3. Ahmed, Z. M., Smith, T. N., Riazuddin, S., Makishima, T., Ghosh, M., Bokhari, S., Menon, P. S. N., Deshmukh, D., Griffith, A. J., Riazuddin, S. et al. (2002). Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum. Genet.110, 527-531. 4. Ahmed, Z. M., Riazuddin, S., Ahmad, J., Bernstein, S. L., Guo, Y., Sabar, M. F., Sieving, P., Riazuddin, S., Griffith, A. J., Friedman, T. B. et al. (2003). PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum. Mol. Genet.12, 3215-3223. 5. Alagramam, K. N., Murcia, C. L., Kwon, H. Y., Pawlowski, K. S., Wright, C. G. and Woychik, R. P. (2001a). The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat. Genet.27, 99-102.
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|