Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells

Author:

El-Amraoui Aziz1,Petit Christine1

Affiliation:

1. Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France

Abstract

Defects in myosin VIIa, the PDZ-domain-containing protein harmonin, cadherin 23 and protocadherin 15 (two cadherins with large extracellular regions), and the putative scaffolding protein Sans underlie five genetic forms of Usher syndrome type I (USH1), the most frequent cause of hereditary deafness-blindness in humans. All USH1 proteins are localised within growing stereocilia and/or the kinocilium that make up the developing auditory hair bundle, the mechanosensitive structure receptive to sound stimulation. Cadherin 23 has been shown to be a component of fibrous links interconnecting the growing stereocilia as well as the kinocilium and the nearest tall stereocilia. A similar function is anticipated for protocadherin 15. Multiple direct interactions between USH1 proteins have been demonstrated. In particular, harmonin b can bind to the cytoplasmic regions of cadherin 23 and protocadherin 15, and to F-actin, and thus probably anchors these cadherins to the actin filaments filling the stereocilia. Myosin VIIa and Sans are both involved in the sorting and/or targeting of harmonin b to the stereocilia. Together, this suggests that the disorganisation of the hair bundles observed in mice mutants lacking orthologues of USH1 proteins may result from a defect of hair-bundle-link-mediated adhesion forces. Moreover, several recent evidences suggest that some genes defective in Usher type II syndrome also encode interstereocilia links, thus bridging the pathogenic pathways of USH1 and USH2 hearing impairment. Additional functions of USH1 proteins in the inner ear and the retina are evident from other phenotypic abnormalities observed in these mice. In particular, myosin VIIa could act at the interface between microtubule- and actin-based transport.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3