Organismal stress, telomeres and life histories

Author:

Monaghan Pat1

Affiliation:

1. Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Most organisms, including ourselves, are exposed to environmental stressors at various points during life, and responses to such stressors have been optimised by evolution to give the best fitness outcomes. It is expected that environmental change will substantially increase long-term stress exposure in many animal groups in the coming decades. A major challenge for biologists is to understand and predict how this will influence individuals, populations and ecosystems, and over what time scale such effects will occur. This requires a multi-disciplinary approach, combining studies of mechanisms with studies of fitness consequences for individuals and their descendants. In this review, I discuss the positive and negative fitness consequences of responses to stressful environments, particularly during early life, and with an emphasis on studies in birds. As many of the mechanisms underlying stress responses are highly conserved across the vertebrate groups, the findings from these studies have general applicability when interpreted in a life history context. One important route that has recently been identified whereby chronic stress exposure can affect health and longevity over long time frames is via effects on telomere dynamics. Much of this work has so far been done on humans, and is correlational in nature, but studies on other taxa, and experimental work, are increasing. I summarise the relevant aspects of vertebrate telomere biology and critically appraise our current knowledge with a view to pointing out important future research directions for our understanding of how stress exposure influences life histories.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference97 articles.

1. Telomere length in small-for-gestational-age babies;Akkad;BJOG,2006

2. Telomeres and aging;Aubert;Physiol. Rev.,2008

3. Mechanisms of telomeric instability;Baird;Cytogenet. Genome Res.,2008

4. Telomeres II;Baird;Exp. Gerontol.,2008

5. Telomere instability in the male germline;Baird;Hum. Mol. Genet.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3