Aging and its modulation in a long-lived worker caste of the honey bee

Author:

Münch Daniel1,Kreibich Claus D.1,Amdam Gro V.12

Affiliation:

1. Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway

2. School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

Abstract

SUMMARY Highly social animals provide alternative aging models in which vastly different lifespan patterns are flexible, and linked to social caste. Research in these species aims to reveal how environment, including social cues, can shape the transition between short-lived and extremely long-lived phenotypes with negligible senescence. Among honey bee workers, short to intermediate lifespans are typical for summer castes, while the winter caste can live up to 10 times longer. For summer castes, experimental interventions could predictably accelerate, slow or revert functional senescence. In contrast, little is known about the partic ular conditions under which periods of negligible senescence in winter castes can be disrupted or sustained. We asked how manipulation of social environment in colonies with long-lived winter bees might alter the pace of functional senescence, measured as learning performance, as well as of cellular senescence, measured as lipofuscin accumulation. We show that behavioral senescence becomes rapidly detectable when the winter state is disrupted, and changes in social task behaviors and social environment (brood) are induced. Likewise, we found that cellular senescence was induced by such social intervention. However, cellular senescence showed marked regional differences, suggesting that particular brain regions age slower than others. Finally, by preventing post-winter colonies from brood rearing, behavioral senescence became undetectable, even after transition to the usually short-lived phenotypes had occurred. We envision that social regulation of negligible functional senescence and highly dynamic accumulation of a universal symptom of cellular aging (lipofuscin) offers rewarding perspectives to target proximate mechanisms of slowed aging.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3