Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis

Author:

Kawaguchi Ayano1,Ikawa Tomoko1,Kasukawa Takeya2,Ueda Hiroki R.23,Kurimoto Kazuki4,Saitou Mitinori4,Matsuzaki Fumio15

Affiliation:

1. Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan.

2. Functional Genomics Unit, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan.

3. Laboratory for Systems Biology, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan.

4. Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology,RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

5. CREST, Japan Science and Technology Agency.

Abstract

Cellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development,it has been difficult to determine how heterogeneous the neural progenitor cells are, owing to dynamic changes in their nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage in mouse. By cluster analysis and in situ hybridization, we have identified a set of genes that distinguishes between the apical and basal progenitors. Despite their relatively homogeneous global gene expression profiles, the apical progenitors exhibit highly variable expression patterns of Notch signaling components, raising the possibility that this causes the heterogeneous division patterns of these cells. Furthermore, we successfully captured the nascent state of basal progenitor cells. These cells are generated shortly after birth from the division of the apical progenitors, and show strong expression of the major Notch ligand delta-like 1, which soon fades away as the cells migrate in the ventricular zone. We also demonstrated that attenuation of Notch signals immediately induces differentiation of apical progenitors into nascent basal progenitors. Thus, a Notch-dependent feedback loop is likely to be in operation to maintain both progenitor populations.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3