The Control of Walking in Orthoptera: II. Motor Neurone Activity in Normal Free-Walking Animals

Author:

BURNS M. D.1,USHERWOOD P.N. R.2

Affiliation:

1. Department of Zoology, University of Glasgow, Glasgow G12 8QQ

2. Department of Zoology, University of Glasgow, Glasgow G12 8QQ; Department of Zoology, University of Nottingham, Nottingham NG7 2RD

Abstract

A brief description is given of the anatomy, innervation and mechanical properties of the extensor tibiae muscles of the locust. Each is innervated by a ‘fast’ (FETi) and ‘slow’ (SETi) excitatory axon, one branch of a common inhibitor (CI) and a fourth small axon (DUMETi). The prothoracic and mesothoracic extensors contract more rapidly than the metathoracic muscle but exhibit a stronger ‘catch’, which can be relaxed by CI or FETi activity. Records were made of electrical activity in the extensor motor nerves in all the legs of locusts and lubber grasshoppers. During standing only the SETi axons were active. During straight line walking in the locust all three motor axons were active, except in the metathoracic leg. A detailed description of the activity pattern of each axon is given. The activity in the grasshopper was similar, but rather more variable. Measurements were made of the mechanical responses of the extensor muscles to these patterns of activity. As walking speeds increased the response to SETi activity approached a constant tension or muscle length which could be strongly modulated by the phasic contractions due to FETi activity. It is suggested that the timing of SETi activity is only important at low walking speeds, and that at high speeds it simply provides a return force for the flexor muscle. The CI produces a slow effect and fires at the wrong time in the step to phasically relax the prothoracic or mesothoracic extensors, so it is suggested that its main role is in the relaxation of coxal muscles. The sources of motor neurone activity are discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3