Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease

Author:

Vartiainen Suvi1,Chen Shanjun1,George Jack1,Tuomela Tea1,Luoto Kaisa R.1,O'Dell Kevin M. C.2,Jacobs Howard T.1

Affiliation:

1. University of Tampere, Tampere, Finland;

2. University of Glasgow, Glasgow, Scotland, UK

Abstract

Abstract A point mutation (stress-sensitive B1, sesB1 in the Drosophila gene coding for the major adult isoform of the adenine nuclear translocase (ANT) represents a model for human diseases associated with ANT insufficiency. We characterized the organismal, bioenergetic and molecular phenotype of sesB1, then tested strategies to compensate the mutant phenotype. In addition to developmental delay and bang-sensitivity, sesB1 manifests impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, apart from the last two, are shared with the tko25t mutant in mitoribosomal protein S12. Mitochondria from sesB1 adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB1 adults exhibited ATP depletion, lactate accumulation, and changes in gene expression consistent with a metabolic shift towards glycolysis, with activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes required for oogenesis, and their eggs, though fertilized, failed to develop to the larval stages. The sesB1 phenotypes of developmental delay and bang-sensitivity were alleviated by altered mtDNA background. Female sterility was substantially rescued by somatic expression of the alternative oxidase (AOX) from Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on increasing mitochondrial bioenergy production, or on alleviating metabolic stress.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3