The lymphatic system favours survival of a unique T. brucei population

Author:

Machado Henrique1ORCID,Temudo António12,Niz Mariana De1ORCID

Affiliation:

1. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa 1 , Lisboa 1649-028 , Portugal

2. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa 2 Bioimaging Unit , , Lisboa 1649-028 , Portugal

Abstract

ABSTRACT Trypanosoma brucei colonise and multiply in the blood vasculature, as well as in various organs of the host's body. Lymph nodes have been previously shown to harbour large numbers of parasites, and the lymphatic system has been proposed as a key site that allows T. brucei distribution through, and colonization of the mammalian body. However, visualization of host-pathogen interactions in the lymphatic system has never captured dynamic events with high spatial and temporal resolution throughout infection. In our work, we used a mixture of tools including intravital microscopy and ex vivo imaging to study T. brucei distribution in 20 sets of lymph nodes. We demonstrate that lymph node colonization by T. brucei is different across lymph node sets, with the most heavily colonised being the draining lymph nodes of main tissue reservoirs: the gonadal white adipose tissue and pancreas. Moreover, we show that the lymphatic vasculature is a pivotal site for parasite dispersal, and altering this colonization by blocking LYVE-1 is detrimental for parasite survival. Additionally, parasites within the lymphatic vasculature have unique morphological and behavioural characteristics, different to those found in the blood, demonstrating that across both types of vasculature, these environments are physically separated. Finally, we demonstrate that the lymph nodes and the lymphatic vasculature undergo significant alterations during T. brucei infection, resulting in oedema throughout the host's body.

Funder

Institut Pasteur

Human Frontier Science Program

Fundação para a Ciência e Tecnologia

ERC

Northwestern University

EMBO

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3