The role of phosphoinositide metabolism in signal transduction in secretory cells

Author:

Putney J. W.1

Affiliation:

1. Calcium Regulation Section, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

Abstract

Activation of a variety of cell surface receptors results in a biphasic increase in the cytoplasmic Ca2+ concentration, due to the release, or mobilization, of intracellular Ca2+ stores and to the entry of Ca2+ from the extracellular space. Stimulation of these same receptors also results in the phospholipase-C-catalysed hydrolysis of the minor plasma membrane phospholipid, phosphatidylinositol 4,5-bisphosphate, with the concomitant formation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and diacylglycerol. Analogous to the adenylyl cyclase signalling system, receptor-mediated stimulation of phospholipase C also appears to occur through one or more intermediary guanine nucleotide-dependent regulatory proteins. It is well established that phosphatidylinositol 4,5-bisphosphate hydrolysis is responsible for the changes in Ca2+ homeostasis. There is strong evidence that Ins(1,4,5)P3 stimulates Ca2+ release from intracellular stores. The Ca2+-releasing actions of Ins(1,4,5)P3 are terminated by its metabolism through two distinct pathways. Ins(1,4,5)P3 is dephosphorylated by a 5-phosphatase to Ins(1,4)P2; alternatively, Ins(1,4,5)P3 can also be phosphorylated to Ins(1,3,4,5)P4 by a 3-kinase. Whereas the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known; a recent proposal that Ins(1,4,5)P3 by emptying an intracellular Ca2+ pool, secondarily elicits Ca2+ entry will be considered. This review summarizes our current understanding of the mechanisms by which inositol phosphates regulate cytoplasmic Ca2+ concentrations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3