Restriction of mitochondrial calcium overload by mcu inactivation renders neuroprotective effect in Zebrafish models of Parkinson's disease

Author:

Soman Smijin K.1ORCID,Bazała Michal1,Keatinge Marcus23ORCID,Bandmann Oliver23,Kuznicki Jacek1ORCID

Affiliation:

1. Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland

2. Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK

3. Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK

Abstract

The loss of dopaminergic neurons (DA) is a pathological hallmark of sporadic and familial forms of Parkinson's Disease (PD). We had previously shown that inhibiting mitochondrial calcium uniporter (mcu) using morpholinos can rescue DA neurons in pink1−/− zebrafish model of PD. In this study, we are showing results from our studies in mcu knockout zebrafish, which was generated using the CRISPR/Cas9 system. Functional assays confirmed impaired mitochondrial calcium influx in mcu−/− zebrafish. We also used in-vivo calcium imaging and fluorescent assays in purified mitochondria to investigate mitochondrial calcium dynamics in a pink1−/− zebrafish model of PD. Mitochondrial morphology was evaluated in DA neurons and muscle fibres using immunolabelling and transgenic lines, respectively. We observed diminished mitochondrial volume in DA neurons of pink1−/− zebrafish, while deletion of mcu restored mitochondrial volume. In contrast, the mitochondrial volume in muscle fibers was not restored after inactivation of mcu in pink1−/− zebrafish. Mitochondrial calcium overload coupled with depolarization of mitochondrial membrane potential leads to mitochondrial dysfunction in pink1−/− zebrafish model of PD. We used in situ hybridisation and immunohistochemical labelling of DA neurons to evaluate the effect of mcu deletion on DA neuronal clusters in the ventral telencephalon of zebrafish brain. We show that DA neurons are rescued after deletion of mcu in pink1−/− and the MPTP zebrafish model of PD. Thus, inactivation of mcu is protective in both genetic and chemical models of PD. Our data reveal that regulating mcu function could be an effective therapeutic target in PD pathology.

Funder

National Science Centre

European Union's Seventh Framework Programme

Parkinson's UK

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3