A novel mechanism of mixing by pulsing corals

Author:

Samson Julia E.1,Miller Laura A.12ORCID,Ray Dylan2,Holzman Roi34ORCID,Shavit Uri45,Khatri Shilpa6

Affiliation:

1. Biology Department, University of North Carolina at Chapel Hill, USA

2. Department of Mathematics, University of North Carolina at Chapel Hill, USA

3. Department of Zoology, Tel Aviv University, Israel

4. Inter-University Institute for Marine Sciences in Eilat, Israel

5. Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel

6. Applied Mathematics Unit, School of Natural Sciences, University of California at Merced, USA

Abstract

The dynamic pulsation of the xeniid corals is one of the most fascinating phenomena observed in coral reefs. We quantify for the first time the flow near the tentacles of these soft corals whose active pulsations are thought to enhance their symbionts’ photosynthetic rates by up to an order of magnitude. These polyps are about 1 cm in diameter and pulse at frequencies between about 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as one moves away from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate that the Péclet number of the bulk flow generated by the coral as being on the order of 100-1000 while the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. Flow measurements using particle image velocimetry reveal that the individual polyps generate a jet of water with positive vertical velocities that do not go below 0.1 cm/s and with average volumetric flow rates of about 0.71 cm3/s. Our results show that there is nearly continual flow in the radial direction towards the polyp with only about 3.3% back flow. 3D numerical simulations uncover a region of slow mixing between the tentacles during expansion. We estimate that the average flow that moves through the bristles of the tentacles is about 0.03 cm/s. The combination of nearly continual flow towards the polyp, slow mixing between the bristles, and the subsequent ejection of this fluid volume into an upward jet ensures the polyp continually samples new water with sufficient time for exchange to occur.

Funder

National Science Foundation

Howard Hughes Medical Institute

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3