Gut microbiota affects development and olfactory behavior in Drosophila melanogaster

Author:

Qiao Huili12,Keesey Ian W.1ORCID,Hansson Bill S.1ORCID,Knaden Markus1ORCID

Affiliation:

1. Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany

2. Henan Provincial Key laboratory of Funiu Mountain Insect Biology, Nanyang Normal University, Nanyang, China

Abstract

It has been shown that gut microbes are very important for the behavior and development of Drosophila, as the beneficial microbes are involved in the identification of suitable feeding and oviposition places. However, in what way these associated gut microbes influence the fitness-related behaviors of Drosophila melanogaster remains unclear. Here we show that D. melanogaster exhibits different behavioral preferences towards gut microbes. Both adults and larvae were attracted by the headspace of Saccharomyces cerevisiae and Lactobacillus plantarum, but were repelled by Acetobacter malorum in behavioral assays, indicating an olfactory mechanism involved in these preference behaviors. While the attraction to yeast was governed by olfactory sensory neurons expressing the odorant co-receptor Orco, the observed behaviors towards the other microbes still remained in flies lacking this co-receptor. By experimentally manipulating the microbiota of the flies, we found that flies did not strive for a diverse microbiome by e.g. increasing their preference towards gut microbes that they had not experienced previously. Instead, in some cases the flies even increased preference for the microbes they were reared on. Furthermore, exposing Drosophila larvae to all three microbes promoted Drosophila’s development while only exposure to S. cerevisiae and A. malorum resulted in the development of larger ovaries and in increased egg numbers the flies laid in an oviposition assay. Thus our study provides a better understanding of how gut microbes affect insect behavior and development, and offers an ecological rationale for preferences of flies for different microbes in their natural environment.

Funder

Max-Planck-Gesellschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3