Author:
Friesen W. O.,Poon M.,Stent G. S.
Abstract
Four oscillatory interneurones that appear to be the principal components of the central swim oscillator of Hirudo medicinalis have been identified on each side of the segmental ganglia of the ventral nerve cord. During ‘swimming’ episodes of an isolated nerve cord preparation each interneurone undergoes a polarization rhythm that is phase-locked with the impulse burst rhythm of the motor neurones known to drive the swimming movement. Passage of current into any of the interneurones can shift the phase of the swim rhythm. One of the interneurones projects its axon rearward to posterior ganglia and the other three project their axons frontward to anterior ganglia. The oscillatory interneurones are connected both intra- and interganglionically to form a topologically complex intersegmental network of concatenated ring circuits that possess the feature of recurrent cyclic inhibition. Theoretical analysis and electronic analogue models show that the network is inherently oscillatory and can produce both a cycle period and intra- and intersegmental phase relations of its elements that are appropriate for generating the body wave of the swimming movement.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献