Mutational analysis of the cytoplasmic domain of β1,4-galactosyltransferase I: influence of phosphorylation on cell surface expression

Author:

Hathaway Helen J.123,Evans Susan C.3,Dubois Daniel H.3,Foote Cynthia I.1,Elder Brooke H.1,Shur Barry D.13

Affiliation:

1. Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA

2. Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA

3. Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Abstract

β1,4-Galactosyltransferase I (GalT I) exists in two subcellular compartments where it performs two distinct functions. The majority of GalT I is localized in the Golgi complex where it participates in glycoprotein biosynthesis; however, a small portion of GalT I is expressed on the cell surface where it functions as a matrix receptor by binding terminal N-acetylglucosamine residues on extracellular glycoside ligands. The GalT I polypeptide occurs in two alternate forms that differ only in the length of their cytoplasmic domains. It is thought that the longer cytoplasmic domain is responsible for GalT I function as a cell surface receptor because of its ability to associate with the detergent-insoluble cytoskeleton. In this study, we demonstrate that the long GalT I cytoplasmic and transmembrane domains are capable of targeting a reporter protein to the plasma membrane, whereas the short cytoplasmic and transmembrane domains do not have this property. The surface-localized GalT I reporter protein partitions with the detergent-insoluble pool, a portion of which co-fractionates with caveolin-containing lipid rafts. Site-directed mutagenesis of the cytoplasmic domain identified a requirement for serine and threonine residues for cell surface expression and function. Replacing either the serine or threonine with aspartic acid reduces surface expression and function, whereas substitution with neutral alanine has no effect on surface expression or function. These results suggest that phosphorylation negatively regulates GalT I function as a surface receptor. Consistent with this, phosphorylation of the endogenous, full-length GalT I inhibits its stable expression on the cell surface. Thus, the 13 amino acid extension unique to the long GalT I isoform is required for GalT I expression on the cell surface, the function of which is regulated by phosphorylation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3