Slime moulds use heuristics based on within-patch experience to decide when to leave

Author:

Latty Tanya1,Beekman Madeleine2

Affiliation:

1. Department of Plant and Food Science, Faculty of Agriculture and the Environment, University of Sydney, NSW, 2015, Australia

2. Behaviour and Genetics of Social Insects Lab and Centre for Mathematical Biology, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia

Abstract

Animals foraging in patchy, non- or slowly-renewing environments must make decisions about how long to remain within a patch. Organisms can use heuristics (‘rules of thumb’) based on available information to decide when to leave the patch. Here we investigate proximate patch departure heuristics in two species of giant, brainless amoeba: the slime moulds Didymium bahiense and Physarum polycephalum. We explicitly tested the importance of information obtained through experience by eliminating chemosensory cues of patch quality. In Physarum polycephalum, patch departure was influenced by the consumption of high, and to a much lesser extent low, quality food items such that engulfing a food item increased patch residency time. Physarum polycephalum also tended to forage for longer in darkened, ‘safe’ patches. In Didymium bahiense, engulfment of either a high or low quality food item increased patch residency irrespective of that food item's quality. Exposure to light had no effect on the patch residency time of D. bahiense. Given that our organisms lack a brain, our results illustrate how the use of simple heuristics can give the impression that individuals make sophisticated foraging decisions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3