A comparison of dissection and 3D approaches to estimate muscle physiological cross-sectional area, validated by in vivo bite forces

Author:

Ginot Samuel1ORCID,Blanke Alexander1

Affiliation:

1. Universität Bonn, Institut für Evolutionbiologie und Ökologie, An der Immenburg 1, Bonn, Germany

Abstract

Performance traits such as bite forces are crucial to fitness and relate to the niche and adaptation of species. However, for many insects it is not possible to directly measure their bite forces because they are too small. Biomechanical models of bite forces are therefore relevant to test hypotheses of adaptation in insects and other small organisms. Although such models are based on classical mechanics, combining forces, material properties, and laws of levers, it is currently unknown how various models relate to bite forces measured in vivo. One critical component of these models is the physiological cross-sectional area (PCSA) of muscles, which relates to the maximum amount of force they can produce. Here, using the grasshopper Schistocerca gregaria, we compare various ways to obtain PCSA values and use in vivo measurements of bite forces to validate the biomechanical models. We show that most approaches used to derive PCSA (dissection, 3D muscle convex hull volume, muscle attachment area) are consistent with the expected relationships between PCSA and bite force, as well as with the muscle stress values known for insects. The only exception to this are PCSA values estimated by direct 3D muscle volume computation, which could be explained by noisy variation produced by shrinkage. This method therefore produces PCSA values which are uncorrelated to in vivo bite forces. Furthermore, despite the fact that all other methods do not significantly differ from expectations, their derived PCSA values vary widely, suggesting a lack of comparability between studies relying on different methods.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3